์ธ๊ณต์ง€๋Šฅ ์ •๋ฆฌ [๋ถ€๋ก] :: Restricted Boltzmann Machine (RBM)

Restricted Boltzmann machine (RBM)

๊ตฌ์„ฑ

๋‘๊ฐœ์˜ ์ธต(๊ฐ€์‹œ์ธต, ์€๋‹‰์ธต)์œผ๋กœ ๊ตฌ์„ฑ๋˜์–ด ์žˆ๋Š” ๋‹จ์ผ ์‹ ๊ฒฝ๋ง

์‹ฌ์ธต ์‹ ๋ขฐ ์‹ ๊ฒฝ๋ง์„ ๊ตฌ์„ฑํ•˜๋Š” ์š”์†Œ๋กœ ์“ฐ์ž„

๊ฐ ์ธต์˜ ๋…ธ๋“œ๋Š” ๋‹ค๋ฅธ ์ธต์˜ ๋…ธ๋“œ์™€ ๋ชจ๋‘ ์—ฐ๊ฒฐ๋˜์–ด์žˆ๊ณ , ๊ฐ™์€ ์ธต์˜ ๋…ธ๋“œ๋ผ๋ฆฌ๋Š” ์—ฐ๊ฒฐx

์‹์œผ๋กœ ๊ณ„์‚ฐํ•˜๋ฉด ๋ชจ๋“  ์ž…๋ ฅ๋…ธ๋“œ๋ฅผ ์ด์šฉํ•œ ์‹์ด ์€๋‹‰์ธต ๋…ธ๋“œ์˜ ๊ฐ’์ด ๋จ

๋Œ€์นญ ์ด๋ถ„ ๊ทธ๋ž˜ํ”„ ๋ผ๊ณ ๋„ ๋ถˆ๋ฆผ

๋น„์ง€๋„ํ•™์Šต

ํ•™์Šต ์ค‘ backward sweep ์‹œ forward sweep ํ–ˆ์„ ๋•Œ์™€ ๋งˆ์ฐฌ๊ฐ€์ง€๋กœ ์ธต๊ฐ„ ๋ชจ๋“  ๋…ธ๋“œ์˜ ์—ฐ๊ฒฐ์„ ํ†ตํ•ด์„œ ๊ฐ’์ด ๊ฑด๋„ˆ๊ฐ„๋‹ค. ์ฆ‰, ๊ฐ€์‹œ์ธต์˜ ๊ฐ’์€ ์€๋‹‰์ธต์˜ ๋ชจ๋“  ๊ฐ’์„ ๊ฐ€์ค‘์น˜๋ฅผ ๊ณฑํ•ด์„œ ๋”ํ•œ๋‹ค. ๊ทธ ๊ฒฐ๊ณผ ์˜ค์ฐจ๋Š” ์žฌ๊ตฌ์„ฑํ•œ ๊ฐ’๊ณผ ์ž…๋ ฅ๊ฐ’์˜ ์ฐจ์ด์ด๋‹ค.

forward sweep

w๊ฐ€ ์ฃผ์–ด์กŒ์„ ๋•Œ ์ž…๋ ฅ v์— ๋Œ€ํ•œ ์€๋‹‰์ธต h์˜ ์กฐ๊ฑด๋ถ€ ํ™•๋ฅ 

backward sweep

์•„์ง ์ดํ•ดํ•˜์ง€ ๋ชปํ–ˆ์Œ

Deep Belief Networks

RBM์„ ์‹ฌ์ธต ๊ตฌ์กฐ๋กœ ๋งŒ๋“  ๋„คํŠธ์›Œํฌ

Greedy layer-wise training ํ•œ ํ›„, Supervised fine-tuningํ•˜๋Š” ๋ฐฉ์‹ ์‚ฌ์šฉ

 

unsupervised pre-training

์—ฌ๋Ÿฌ ํ•™์Šต๋ฒ•์—์„œ label์ด ์žˆ๋Š” ํ•™์Šต data๊ฐ€ ๋ถ€์กฑํ•  ๋•Œ, ์—†๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•ด์„œ ์‚ฌ์ „ํ•™์Šต(unsupervised pre-training)์‹œํ‚ค๊ณ  ์ดํ›„์— label์ด ์žˆ๋Š” data๋ฅผ ์ด์šฉํ•ด supervised fine-tuningํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์“ด๋‹ค.

 

Greedy layer-wise training

์ž‘์€๋ถ€๋ถ„์„ ์ฐจ๋ก€๋กœ ํ•™์Šตํ•˜๋Š” fine-tuning ๋ฐฉ๋ฒ•์„ ์‚ฌ์šฉ, AE(AutoEncoder) ์ƒ์—์„œ ๋™์ž‘

๊ธฐ์กด์—๋Š” ๊ธฐ๋Œ€๊ฐ’๊ณผ ์‹ค์ œ ์ถœ๋ ฅ๊ฐ’์˜ ์ฐจ๋ฅผ ์—ญ์ „ํŒŒ ์‹œํ‚ค๋Š” ์ง€๋„ํ•™์Šต์„ ํ–‰ํ–ˆ์ง€๋งŒ, AE์—์„œ๋Š” ์ž…๋ ฅ๊ณผ ์‹ค์ฒด ์ถœ๋ ฅ๊ฐ’์˜ ์ฐจ๋ฅผ ์ด์šฉํ•œ๋‹ค. (์—ญ์ „ํŒŒ ๋ฐฉ์‹์€ ๋น„์Šท)

hidden layer๊ฐ€ ์—ฌ๋Ÿฌ ์ธต์ผ๋•Œ๋Š” ์ธต ๋ณ„๋กœ ํƒ์š•์Šค๋Ÿฝ๊ฒŒ(Greedy) ํ•™์Šต์„ ์‹œํ‚จ๋‹ค.

 

ํ˜„์žฌ๋Š” ๋งŽ์ด ์‚ฌ์šฉ๋˜์ง€ ์•Š๋Š” ๋ฐฉ๋ฒ•

๋ฐ˜์‘ํ˜•